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Abstract 

LiDAR (Light Detection and Ranging) point cloud data is essential for 3D spatial 

representation, because of its complex geometry and volume, it can be difficult to store and 

transmit. Its rich structural characteristics are frequently not preserved by conventional 

compression techniques. In order to resolve this, a mathematical framework is proposed for 

compressing point cloud data called 3DGWT-LAE (Graph Wavelet Transform with Laplacian 

matrix, Adjacency matrix, and Eigenvalues) is put forth. With the goal to capture the geometric 

structure, the framework first builds a sparse adjacency matrix using nearest neighbor graphs. 

The adjacency matrix yields the Laplacian matrix, which encodes smoothness and connectedness. 

A compact representation of the data is given by the eigenvalues obtained from the spectral 

analysis of the Laplacian. The data is then efficiently compressed while maintaining geometric 

integrity by applying multi-resolution wavelet filters, which produce coefficients via the GWT. 

The proposed 3DGWT-LAE mathematical framework is demonstrated by the qualitative and 

quantitative results obtained using a variety of 3D LiDAR point cloud datasets (Sydney Urban 

Datasets), validate the framework effectiveness and show that it can strike a compromise between 

compression and geometric integrity. The scan270.pcd from Sydney urban dataset, which had an 

initial size of 1100 KB, was used as input to test the proposed compression technique. The 

effectiveness of the proposed method was demonstrated by the substantial reduction in file size 

to 345.98 KB after the compression technique was applied. Furthermore, 492.70 KB was the size 

of the rebuilt file, guaranteeing accurate data restoration. The file was compressed to about 68.5 

of its original size using this method, which yields a compression ratio of about 3.18. Crucially, 

the original data integrity is maintained because the reconstruction technique is lossless. These 

outcomes demonstrate the 3DGWT-LAE method capacity to effectively compress point cloud 

data while preserving its original quality during reconstructed point cloud data. Notably, it offers 

significant compression efficiency without sacrificing geometric precision, making point cloud 

data transmission and storage cost-effective. 
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I. Introduction 

Light Detection and Ranging (LiDAR) is an advanced remote sensing technique that employs laser 

beams to measure distances with great precision. The device sends laser pulses to a target surface and 

measures the time it takes for the reflected signals to return. LiDAR systems use the speed of light as a 

constant to compute the distance to the target. LiDAR generates highly detailed spatial data by 

generating dozens or millions of pulses per second from many directions. The output of a LiDAR system 

is known as 3D Point Cloud Data (PCD), which is a dense set of data points in three dimensions. Each 

point indicates a specific location in the environment, which is commonly stated in Cartesian 

coordinates (𝑥, 𝑦, and 𝑧). Depending on the system's capabilities, the PCD may include additional 

information such as intensity values (reflectance of laser pulses) and RGB color data. LiDAR PCD is a 

key component of current spatial analysis and modelling. Its superior resolution and precision enable 

ground-breaking applications in artificial intelligence, machine learning, and robotics. LiDAR PCD is 

becoming more accessible as compression and processing techniques progress, paving the path for new 

advancements in 3D data representation and manipulation. A vital component of three-dimensional 

(3D) spatial representation, LiDAR (Light Detection and Ranging) PCD presents significant storage 

and transmission issues because of its intricate geometry and vast volume. Conventional compression 

techniques typically fail short in effectively capturing point cloud data rich structural properties. As a 

result, 3DGWT-LAE an extensive mathematical framework for compressing the 3D point cloud data 

using wavelet transform and graph-based strategies is proposed. The exponential expansion of point 

cloud data necessitates the development of innovative compression methods that preserve geometric 

integrity while reducing data size. The significance of complex mathematical frameworks in resolving 

compression challenges is highlighted in the proposed work. 

To highlight the main features of the proposed approach, paying particular attention to its impact, 

benefits, and innovation. This well-organized framework guarantees lucidity and highlights the 

significance of proposed approach. 

• The proposed 3DGWT-LAE technique compresses 3D point cloud data using a mathematical 

framework based on the Graph Wavelet Transform (GWT). 

• It combines wavelet analysis and spectral graph theory to accomplish effective compression 

while maintaining crucial topological and geometric characteristics. 

• The proposed 3DGWT-LAE method guarantees lossless reconstruction with an infinite Peak 

Signal-to-Noise Ratio (PSNR) and a Mean Squared Error (MSE) of 0.001. 

• The proposed technique 3DGWT-LAE preserves the correctness of reconstructed point cloud 

data, which is essential for applications that need high precision. 

• Compression ratios (CR) are noticeably higher than with conventional techniques like WinRAR 

and 7-Zip. 

• The method suitability for real-world 3D data with different levels of complexity was 

demonstrated by testing on the Sydney Urban Dataset. The ability to maintain fine details in 

3D point cloud data, including corners and edges. 

The next sections are organized as follows: Section II covers the discussions relevant prior work in 

the field of LiDAR point cloud data processing. Section III clarify the proposed methodology, detailing 

the procedures for preprocessing the data, the novel method utilized for processing and compression, 

and the framework for performance evaluation. The experimental results are shown in Section IV, 

demonstrating both quantitative and qualitative data to validate the proposed methodology. And lastly, 

Section V summarizes major findings and recommended paths for future research. 

II. Related Works 
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One major barrier to the broad use of graph neural networks (GNNs) in many applications is their 

computational complexity. The number of parameters in GNN models increases quickly with the size 

of the input graph, which results in longer training and inference times, as explained in [1]. Because of 

their excellent performance on a wide range of tasks described in [2], graph neural networks, or GNNs, 

have been employed extensively in graph analysis. Modern TE optimisers rely on conventional 

optimisation methods like constraint programming, local search, or linear programming, which are 

described in [3]. The latest tensor decomposition approach is used in the compression phase to take use 

of the patterns and redundancies that are naturally present in the 3D point cloud data, as described in 

[4]. A 3D point cloud's irregularity, dispersion, and sparseness prevent it from being evenly arranged 

on a regular grid. Potential information loss and empty operation are two drawbacks of the convolution 

neural network (CNN) approach for 3D point cloud feature extraction, as stated in [5]. Ideal method for 

handling irregular point clouds, but their use in large-scale LiDAR point cloud processing is limited 

due to the enormous calculations required to search for nearby points in the graph, as detailed in [6]. In 

point cloud data coordinates, as well as displacement and shear to enhance the model's resilience and 

invariance to the geometric alterations detailed in [7]. The main query is whether sensor measurements, 

as detailed in [8], may be eliminated from the graph without significantly reducing the amount of 

information retained. 

 

Data processing, transmission, and storage are severely hampered by the exponential increase in 

the volume of 3D data created, especially in the form of Light Detection and Ranging (LiDAR) point 

clouds (PCs). Point cloud (PC) representation of 3D visual information has shown to be a very versatile 

format with a wide range of applications, from machine vision jobs in the robotics and autonomous 

driving domains as detailed in [9] to multimedia immersive communication. Colour signals can now be 

compressed using graph-based coding approaches, fully utilising the geometry data provided in [10]. 

There is a lot of study being done on picture compression and retrieval. Low level image retrieval 

descriptors, which are based on statistical features of pixel values, will change as a result of lossy image 

compression, which reduces the visual quality of images and alters their actual pixel values, as explained 

in [11]. A more condensed representation of maps is necessary to minimise complexity while 

maintaining the localisation performance outlined in [12], as loading, communication, and processing 

of the original dense maps take a lot of time on the onboard computing platform. The sensor's massive 

data output, which causes a number of problems with transmission, processing, and storage. These 

issues can now be resolved by applying data compression methods to the point cloud mentioned in [13]. 

The effectiveness of the model has been confirmed using well-known and proven compression methods 

as WinRAR and 7-Zip, which are detailed in [14]. The axis outlier identification method outlined in 

[15] is used to clean and normalise the raw LiDAR data. The k-means algorithm, which is explained in 

[16], is used to partition 3D point clouds into clusters. The unequal distribution of geometric and 

spectral information described in [17] makes it difficult to extract local features in multispectral LiDAR 

point cloud sceneries. Dependable eigen-features from LiDAR data, and in order to enhance 

classification precision, we present a technique for examining a point cloud's local geometric properties 

using a weighted covariance matrix with a geometric median, as detailed in [18]. A set graph for point 

cloud sets and a range graph for point clouds, which minimise memory usage and processing time as 

detailed in [19]. The LiDAR point cloud assigns a category to every point, enabling precise item and 

structural identification in the environment as detailed in [20]. The component is used to eliminate the 

3D point cloud data's temporal redundancy, as explained in [22]. 

III. Proposed Methodology 

The approach described in this proposed research is intended to address the difficulties related to 

its huge scale and complex shape, point cloud data presents considerable storage and transmission 

issues. The exponential growth in point cloud data volume has led to the development of a revolutionary 

compression technique that effectively reduces data size while preserving geometric integrity. The 

presented work attempts to address these issues by offering a method designed to compress point cloud 

data while preserving the geometric structure. 
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Fig. 1: Process Flow of 3DGWT-LAE 

The proposed 3DGWT-LAE approach uses graph wavelet transforms to compress 3D point cloud 

data. This procedure creates a graph representation that maintains the underlying geometry of the data 

by utilising the adjacency matrix, graph Laplacian, and spectral decomposition (eigenvalues and 

eigenvectors). Below is a detailed description of the methodology: 

 

 

Fig. 2: Proposed 3DGWT-LAE Architecture 

This architecture integrates sophisticated computational and mathematical methods to provide 

dependable reconstruction and high compression rates for 3D point cloud data. With an emphasis on 

effective compression and lossless reconstruction, the Proposed 3DGWT-LAE Architecture is made to 

process 3D point cloud data. The following steps make up its methodical workflow: 

Input and Graph Development is the input 3D point cloud data is where the process starts. To provide 

an efficient representation of the spatial interactions between points, a graph is created from this data 

using the Laplacian matrix, Adjacency matrix, and Eigen values (LAE) approach. The graph is 

examined in the spectral domain using Graph Wavelet Transform (GWT) with Filter Bank Generation,  
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which creates a filter bank of band-pass, high-pass, and low-pass filters. As a result, multi-scale analysis 

and effective graph signal transformation using GWT. Adaptive Predictive Coding technique utilizes 

GWT coefficients. Coefficient prediction is used in this step to reduce redundancies in the converted 

data and increase compression performance. Predicted coefficients are compressed during compression 

process and decompression to minimize data size while maintaining significant data. The precise 

reconstruction of the original point cloud data, a decompression procedure is incorporated. 

Reconstructing the point cloud data from the compressed representation is the last step. Lossless 

reconstruction is ensured by the proposed approach 3DGWT-LAE, preserving the precision and fidelity 

of the original point cloud data. 

3.1 Input: 3D Point Cloud Data 

The proposed approach 3DGWT-LAE begins with raw 3D point cloud data, which is a collection 

of points: 

    𝑃 = {𝑝1, 𝑝2, ⋯ , 𝑝𝑁}                                                                                    (1) 

When each point 𝑝𝑖 is described by its spatial coordinates in a 3D Cartesian space (𝑥𝑖, 𝑦𝑖 , and 𝑧𝑖). This format is 

appropriate for processing in a variety of applications, including compression, visualisation, and analysis, since 

it captures the intricate geometry of the scanned scene. 

3.2 Preprocessing 

Outliers and noise are frequently present in raw point cloud data because of flaws in the data 

collection process. To improve the data quality and fidelity while maintaining the underlying structure 

geometric integrity, noise must be effectively removed. Detailed descriptions of the methods for noise 

removal are provided below: 

3.2.1 Statistical Outlier Removal (SOR):  

A reliable technique for identifying and removing noise based on the point cloud data statistical 

characteristics is statistical outlier removal. Outliers are found and eliminated by using the distances 

between each location and its neighbors.  

For every point 𝑝𝑖 in the point cloud data 𝑃, calculating the distances to its k-nearest neighbours. 

                                                                                 𝑑̅(𝑝𝑖) =  
1

𝐾
 ∑ ‖𝑝𝑖 −  𝑝𝑚(𝑖)‖

𝑘

𝑚=1

                                                              (2) 

Where the 𝑚𝑡ℎ nearest neighbour of 𝑝𝑖 is represented by 𝑝𝑗(𝑖), and the Euclidean distance is indicated 

by ‖ . ‖. Determine these global mean 𝜇𝑑 and standard deviation 𝜎𝑑  are as follows: 

                                                                                𝜇𝑑 =  
1

𝑁
 ∑ 𝑑̅(𝑝𝑖)

𝑁

𝑖=1

                                                                 (3) 

                                                                           𝜎𝑑 =  √
1

𝑁
∑(𝑑̅(𝑐)

𝑁

𝑖=1

− 𝜇𝑑)2                                                      (4) 

Outlier detection is established used a threshold depending on 𝑑. If 𝛼 is a parameter its defined as 𝛼 =

1, then points are regarded as outliers.  

                                                                           𝑑̅(𝑝𝑖) >  𝜇𝑑 +  𝛼 . 𝜎𝑑                                                                           (5)   
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To produce a cleaned point cloud, keep only the points 𝑝𝑖 that fall below the threshold. Subsequent 

graph-based operations such as adjacency matrix construction, graph Laplacian computation, and K-

Nearest Neighbours (KNN) are more reliable after this phase. 

3.3 Graph construction  

After preprocessing the point cloud data with Statistical Outlier Removal (SOR), a 3DGWT-LAE 

is built graph that depicts the point cloud underlying geometric structure is created. To represent the 3D 

point cloud data in a graph structure both topologically and geometrically, graph creation is essential. 

KNN computation, adjacency matrix creation, and Laplacian matrix derivation are the three primary 

processes involved in 3DGWT-LAE process. 

3.3.1 K-Nearest Neighbour (KNN):  

The KNN technique is used to accomplish in 3DGWT-LAE for the purpose of graph 

construction. A thorough description of the process is provided below: 

Points 𝑝𝑖 ∈ 𝑃 that meet the following criteria are present in the pre-processed point cloud 𝑃′ from 

equation (5). After SOR, the resultant point cloud as  

                                                            𝑃′ = {𝑝1, 𝑝2, … , 𝑝𝑀}. where 𝑀 ≤ 𝑁                                                                 (6) 

When building the graph, 𝑘 is the number of neighbours that are considered for each point 𝑝𝑖. The graph 

local connectedness is determined by 𝑘: 

To calculate the Euclidean distance between two points in three dimensions. For two points are:  

                                                         𝑝𝑖 = (𝑥𝑖, 𝑦𝑖 , 𝑧𝑖) and 𝑝𝑗 = (𝑥𝑗, 𝑦𝑗, 𝑧𝑗)                                                                     (7)  

                                            𝑑(𝑝𝑖, 𝑝𝑗) =  √(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2 + (𝑧𝑖 − 𝑧𝑗)2                                                       (8)  

The geometric relationship between points is captured by the Euclidean distance. The 𝑀 points in the pre-

processed point cloud from (6). Each entry 𝐷 = [𝑖, 𝑗] in a 𝑀 × 𝑀 matrix 𝐷 represents the Euclidean distance 

between points 𝑝𝑖 and 𝑝𝑗. 

                                      𝑑(𝑝𝑖, 𝑝𝑗) =  ‖𝑝𝑖 , 𝑝𝑗‖2 = √(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2 + (𝑧𝑖 − 𝑧𝑗)2                                       (9)  

Create a distance matrix 𝐷 with dimension 𝑀 × 𝑀, where 𝐷[𝑖, 𝑗] = 𝑑(𝑝𝑖, 𝑝𝑗). 

                                                     𝐷[𝑖, 𝑗] = 𝑑(𝑝𝑖, 𝑝𝑗), 𝑓𝑜𝑟 𝑖, 𝑗 = 1, 2, … , 𝑀                                                              (10)           

Finding the K-Nearest Neighbours for each point 𝑝𝑖: The self-distance 𝐷[𝑖, 𝑗] should be excluded. In 

ascending order sorting the 𝐷[𝑖, 𝑗] distances of 𝑝𝑖. The KNN indices of the least k distances are  

                      𝑁𝑁𝑘(𝑝𝑖) = {𝑝𝑗 ∈  𝑃′ ∶ 𝑗 ∈ 𝑖𝑛𝑑𝑖𝑐𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑘 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑓𝑟𝑜𝑚 𝑝𝑖  }                              (11) 

The 𝑁𝑁𝑘(𝑝𝑖) represents the indices includes the distances between 𝑝𝑖 of 3D point cloud. 

3.3.2 Adjacency Matrix: 

The next stage is to create a sparse adjacency matrix A that captures the geometric structure of 

the point cloud after preprocessing the point cloud data using SOR and building the graph using KNN. 

In graph theory, the adjacency matrix is a basic idea that shows the relationships (edges) between a 

graph vertex (points). It is especially used for computing 3DGWT-LAE and describing relationships. 

The adjacency matrix aids in describing the connectedness between points in a 3D point cloud, which 

is crucial for compression and smoothing in the context of point cloud processing and graph creation. 
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The algorithm above ensuring that every point is connected to its closest neighbours, the method creates 

a network structure that represents the point cloud local geometry. Based on the KNN results, creating 

sparse 𝑀 × 𝑀.matrix 𝐴. that represents the connectivity of the network. As the adjacency matrix input, 

the list of neighbours 𝑁𝑁𝑘(𝑝𝑖) for every point, and weighting function 𝑤(𝑝𝑖, 𝑝𝑗) for the edges was 

generated. With respect to every pair of points 𝑝𝑖 and 𝑝𝑗: 

                                               𝐴𝑖𝑗 =  {
𝑤(𝑝𝑖, 𝑝𝑗),   𝑖𝑓 𝑝𝑗  ∈  𝑁𝑁𝑘(𝑝𝑖)

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}                                                         (12) 

Where, 𝑁𝑁𝑘(𝑝𝑖) is the set of KNN of point 𝑝𝑖, determined by the Euclidean distance. 

                                                     𝑑(𝑝𝑖 , 𝑝𝑗) =  ‖ 𝑝𝑖 − 𝑝𝑗‖2                                                                        (13) 

The weight given to the edge between 𝑝𝑖 and 𝑝𝑗j is 𝑤(𝑝𝑖, 𝑝𝑗), and it is described as follows: 

                                                                𝑤(𝑝𝑖 , 𝑝𝑗) = exp  (
‖ 𝑝𝑖 − 𝑝𝑗‖2

2𝜎2 )                                                      (14) 

           𝐴𝑖𝑗 = 0 𝑖𝑓 𝑝𝑗 ∉  𝑁𝑁𝑘(𝑝𝑖)                                                          (15)                            

The graph connection as determined by the point cloud is represented by the adjacency matrix 𝐴. It 

maintains the local geometric structure by encoding associations between points according to their 

spatial closeness. This produces a sparse, symmetric adjacency matrix 𝐴 of size 𝑀 × 𝑀, where 𝑀 is the 

number of cloud points. The localised character of connections is reflected in the sparsity of A, which 

effectively captures the geometric relationships. 

                                                                            𝐺 = (𝑉, 𝐸)                                                                              (16) 

The graph 𝐺 from equation (16), where 𝑉 represents the points and 𝐸 represents the edges defined by 

the adjacency matrix 𝐴 serves as the basis for further graph-based transformations and processing steps. 

The set of vertices is denoted by (|𝑉| = 𝑀), the set of edges is denoted by 𝐸, and the adjacency matrix 

is denoted by 𝐴𝑖𝑗, is a square matrix of size 𝑀 × 𝑀, where each entry 𝐷[𝑖, 𝑗] denotes the edge 

connecting the vertices 𝑝𝑖 and 𝑝𝑗. 

3.3.3 Laplacian Matrix: 
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The Laplacian matrix is calculated after the adjacency matrix has been constructed in order to 

examine the 3D point cloud graph smoothness and connectedness.  

The Laplacian matrix, represented by 𝐿, is a fundamental representation in spectral graph theory and is 

frequently employed for process of compression. The adjacency matrix 𝐴 and the degree matrix 𝐷 are 

used to construct the Laplacian matrix 𝐿. It is described as: 

                                                                          𝐿 = 𝐷 − 𝐴                                                                                (17) 

Where 𝐴 shows the relationships between the graph points. The degree matrix is denoted as 𝐷, a diagonal matrix 

in which each diagonal element denotes the degree. 

Determining the degree matrix 𝐷, a diagonal matrix in which the degree of node 𝑖 is represented by 

each diagonal element 𝐷𝑖𝑖: 

                                                                           𝐷𝑖𝑖 =  ∑ 𝐴𝑖𝑗

𝑀

𝑗=1

                                                                            (18) 

                                                   𝐿𝑖𝑗 = {

𝐷𝑖𝑖 ,   𝑖𝑓 𝑖 = 𝑗,

−𝐴𝑖𝑗, 𝑖𝑓 𝑖 ≠ 𝑗 𝑎𝑛𝑑 (𝑖, 𝑗) ∈ 𝐸

0, 𝑖𝑓 𝑖 ≠ 𝑗 𝑎𝑛𝑑 (𝑖, 𝑗) ∉ 𝐸

}                                                           (19) 

From the Adjacency Matrix 𝐴 in equation (12) and the Degree Matrix 𝐷 in equation (18), the Laplacian matrix is 

obtained 𝐿 in equation (19), where: The Degree Matrix 𝐷 is a diagonal matrix in which the degree (number of 

neighbours) of a corresponding point is represented by each diagonal member. 

Following the construction of the Laplacian matrix 𝐿, eigen decomposition is used to examine its 

spectral characteristics. 3DGWT-LAE procedure forms the basis for compact data representation and 

transformation in the graph domain and is essential for structure of the graph 𝐺.  

The process of factorising the Laplacian matrix 𝐿 into its eigenvalues and eigenvectors is known as 

eigen decomposition. This is expressed mathematically as 

                                                                     𝐿 = 𝑉 ∧ 𝑉𝑇                                                                             (20)      

where ∧ is a diagonal matrix of eigenvalues and 𝑉 is a matrix of eigenvectors. The eigenvectors 𝑣1, 

𝑣2, … , 𝑁 of the Laplacian matrix 𝐿 are the columns of the matrix 𝑉. Every vector that has the eigenvalue 

equation is an eigenvector 𝑣𝑖. ∧ is the diagonal matrix of eigenvalues that reflect the graph spectral 

frequencies of 𝜆1, 𝜆2, … , 𝑁. 

                                                                            𝐿𝑣𝑖 =  𝜆𝑖𝑣𝑖                                                                               (21) 

The graph Laplacian matrix is denoted by 𝐿. The eigenvalue corresponding to the eigenvector 𝑣𝑖 is 

indicated by 𝜆𝑖. 

                   𝑉𝑇𝑉 = 𝐼                                                                              (22) 

Since 𝑉 is an orthonormal matrix (eigenvectors), its columns, having a unit norm and are orthogonal to 

one another from above equation (21). The identity matrix is represented by 𝐼. 

3.4 Proposed 3DGWT-LAE Compression Process 

The method of 3DGWT-LAE compression entails reducing the size of the original 3D point cloud 

data while maintaining all pertinent information. First, a filter bank generation is used to extract multi-

scale features using a Graph Wavelet Transform (GWT). The GWT coefficients are then subjected to 

adaptive predictive coding, which makes use of dependencies between the coefficients to efficiently 

encode data. This procedure allows for lossless compression while maintaining the fidelity and integrity 

of the reconstructed data, resulting in a much smaller file size. 
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3.4.1 Filter Bank Generation:  

The next phase in the 3DGWT-LAE process is to design and generate the filter bank after 

building the Laplacian matrix 𝐿 and extracting the graph spectral features using eigen decomposition. 

For multi-resolution analysis, the filter bank is an essential tool for breaking down the graph signal into 

frequency bands. The process of creating a filter bank is outlined in detail as follows: 

In order to analyse and process graph signals, the filter bank is essential. By breaking down the graph 

signal into different frequency components, it functions as a group of filters that facilitate effective 

signal analysis and manipulation. 

Graph signals, denoted by 𝑓, are real-valued functions on the graph nodes: 

                                                                     𝑓: 𝑉 → ℝ, 𝑓 = [𝑓1, 𝑓2, ⋯ , 𝑓𝑁]𝑇                                                    (23)    

Where, the signal value at the 𝑖𝑡ℎ node of the graph 𝐺 is represented by 𝑓𝑖. The total number of nodes 

is 𝑁. This signal as a vector is 𝑓 ∈ ℝ𝑁, where each element represents the signal value of a node. 

    𝑓 = 𝑉𝑇𝑓                                                                                  (24) 

The graph signal in the spectral domain is denoted by 𝑓. The eigenvector matrix of 𝐿 is denoted by 𝑉. 

   𝑓 = 𝑉 𝑓                                                                                    (25) 

The frequencies of the graph signal are represented by the eigenvalues ∧ where smaller eigenvalues 

indicate smoother variations. The eigenvalues 𝜆𝑖 of 𝐿 are subjected to a function 𝑔(𝜆) in order to modify 

a graph signal. The filtered graph signal, 𝑓𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑, is as follows 

           𝑓𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 = 𝑉𝑔(∧)𝑉𝑇𝑓                                                                   (26) 

                                                    𝑔(𝑉) = (𝑔(𝜆1), 𝑔(𝜆2), ⋯ , 𝑔(𝜆𝑁))                                                       (27)   

This operation uses 𝑔(𝜆) to scale the spectral coefficients 𝑓. 

Through the application of particular filter functions 𝑔(𝜆) to the graph Laplacian eigenvalues, spectral 

filters modify the frequency of graph signals. The frequency components that are emphasised depend 

on the type of filter viz low-pass, high-pass, and band-pass.  

3.4.1.1 Low Pass Filters: 

The low-pass filters emphasize on low-frequency elements, which are represented by graph 

fluctuations that are smooth.  It eliminates noise and abrupt fluctuations by suppressing high-frequency 

components. 

                                                      𝑔𝑙𝑜𝑤(𝜆) = −𝑒𝛼𝜆, 𝛼 > 0                                                                      (28) 

𝜆 is the frequency representing eigenvalue of the Laplacian, and  𝛼 regulates the degree of aggressive 

attenuation of high frequencies. 𝛼 leads to more robust suppression of high frequencies. At the lowest 

frequency, 𝜆 = 0, low frequencies are completely retained since 𝑔𝑙𝑜𝑤
(0) = 1. Higher frequencies are 

suppressed by the exponential decrease of −𝑒𝛼𝜆 as 𝜆 rises. 

3.4.1.2 High Pass Filters: 

The high pass filters highlight high-frequency elements, which represent the graph edges and 

localised variations. It eliminates global or smooth patterns by suppressing low-frequency components. 

                                                             𝑔ℎ𝑖𝑔ℎ
(𝜆) = 𝜆𝑒−𝛽𝜆, 𝛽 > 0                                                              (29) 
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𝜆 is the Laplacian's eigenvalue. 𝛽 regulates the rate of decay at extremely high frequencies. More high-

frequency features are preserved when 𝛽 is smaller. Because low frequencies are totally suppressed at, 

𝜆 = 0, 𝑔ℎ𝑖𝑔ℎ
(0) = 0, In the case of bigger 𝜆, 𝜆𝑒−𝛽𝜆

 first rises and then begins to decrease as 𝑒−𝛽𝜆 takes 

precedence. 

3.4.1.3 Band Pass Filters: 

The band pass filters suppresses both extremely low and extremely high frequencies while 

concentrating on a certain middle-range frequency band. It separates characteristics at specific scales. 

                                                            𝑔𝑏𝑎𝑛𝑑(𝜆) = 𝑒
−

(𝜆− 𝜇)2

2𝜎2                                                                      (30) 

Where 𝜆 is the Laplacian Eigenvalue. The band-pass filter central frequency is represented by µ. It 

establishes the relevant frequency range. The bandwidth is denoted by 𝜎. regulates the band width 

around µ. At 𝜆 =  𝜇, 𝑔
𝑏𝑎𝑛𝑑

(𝜇) = 1, indicating that frequencies near 𝜇 are highlighted. The 𝑔
𝑏𝑎𝑛𝑑

(𝜆) 

decays exponentially for 𝜆 far from 𝜇, suppressing frequencies outside the band. 

3.4.2 Graph Wavelet Transform (GWT): 

In the proposed approach 3DGWT-LAE, wavelets from Euclidean spaces are transformed into 

graph structured data using the GWT. Multi-scale graph analysis is made possible by GWT, which 

breaks down graph signals into localised components at various scales. Scaling (low pass) and wavelet 

(high-pass) functions are both used in wavelet transforms. These functions on graphs are intended to: 

Scaling function show low-frequency, smooth components, and wavelet function shows high-

frequency, localised components. 

On the graph, GWT wavelets are localised. Using the graph Laplacian spectral features, localisation is 

accomplished: 

                                                                          𝜓𝑖 = 𝑔(𝜆𝑖)𝑣𝑖                                                                             (31) 

Where 𝑔(𝜆𝑖) is the filter function (such as band-pass, high-pass, or low-pass). 𝑣𝑖   is the eigenvector of 

the graph Laplacian that corresponds to the eigenvalue 𝑣𝑖. GWT dilates the filter function 𝑔(𝜆),  to 

produce wavelets at various scales: 

                                                                 𝑔
𝑠
(𝜆) = 𝑔(𝑠𝜆), 𝑠 > 0                                                                   (32)  

𝑠 is the parameter for scale. While larger 𝑠 capture broader structures (low frequencies), smaller 𝑠 

highlight minute details (high frequencies). Wavelet coefficients can be obtained by applying the 

wavelets 𝜓𝑠 to the graph signal 𝑓: 

                                                              𝑊𝑠(𝑓) =  𝑉𝑇𝑔𝑠 (𝛬)𝑓                                                                           (33) 

Where the wavelet coefficients at scale 𝑠 are represented by 𝑊𝑠(𝑓), the eigenvector matrix of the graph 

Laplacian is represented by 𝑉𝑇 , and (𝛬). Adaptive Predictive Coding is used for compression in the 

following manner: 𝑔𝑠 (𝛬) is the filter bank applied on the eigenvalues, and 𝑓 is the original signal. 

3.5 Adaptive Predictive Coding  

The proposed method makes use of adaptive predictive coding, a potent technique that improves 

data compression efficiency, for 3D point cloud data processed using GWT. It reduces redundancies, 

preserves crucial information for reconstruction, and predicts data points based on values encoded.  

Utilizing 𝑊𝑠(𝑓) as the input for adaptive predictive coding. The GWT coefficients 𝑊𝑠(𝑓) are handled 

as a signal that to be compressed. These coefficients are appropriate for predictive coding they 

frequently show high correlations, particularly between adjacent points or scales. 

 

        𝑊̂𝑠(𝑖) = 𝑓(𝑊𝑠(1), 𝑊𝑠(2), ⋯ 𝑊𝑠(𝑖 − 1);  𝜃)                                      (34) 
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For the 𝑖𝑡ℎ coefficient, the expected value is 𝑊̂𝑠(𝑖). A predictive function, used in 3DGWT-LAE, is 

represented as 𝑓 (. ). The predictive model adaptively updated parameters are represented by 𝜃. Finding 

the difference between the predicted and actual coefficients by, 

      𝑟𝑖 =  𝑊𝑠(𝑖) −  𝑊̂𝑠(𝑖)                                                                 (35) 

Compared to the initial coefficients, the residual 𝑟𝑖 has a lower entropy and is compressible. Based on 

the residual 𝑟𝑖, update the predictive model parameters 𝜃: 

             𝜃 ←  𝜃 + ∆𝜃                                                                       (36) 

where the mean squared error (MSE) is usually the loss function that is minimized to determine ∆𝜃: 

                                                                          𝐿(𝜃) =  
1

𝑛
 ∑(

𝑖

𝑖=1

𝑟𝑖)2                                                                   (37) 

The original signal, 𝑓, is converted to 𝑊𝑠(𝑓) by applying GWT. By anticipating and encoding the 

residuals, compress 𝑊𝑠(𝑓) using adaptive predictive coding. To get the lossless reconstruction of the 

original data, rebuild the coefficients and using inverse GWT. This method preserves the integrity of 

the point cloud data while efficiently reducing storage. 

  𝑊𝑠(𝑖) =  𝑊̂𝑠(𝑖) + 𝑟𝑖                                                                (38) 

While decompressing: Decoding the residuals 𝑟𝑖  that are entropy encoded. Reconstruct the coefficients 

using the predictive model 𝑓(. ).  

     𝑓 =  𝑔𝑠
−1 (𝛬) (𝑉𝑊𝑠(𝑓)                                                                            (39) 

Following the reconstruction of 𝑊𝑠(𝑓), the original signal 𝑓 is recovered using the inverse Graph 

Wavelet Transform (iGWT). In this procedure, the GWT steps are reversed using the eigenvector matrix 

V and the filter bank 𝑔𝑠
−1 (𝛬). The wavelet coefficients are transformed back into the graph domain 

using 𝑉. 𝑔𝑠
−1 (𝛬) reverses the scaling that was done during GWT. This guarantees that the original 

signal is restored from its compressed representation without any loss. 

3.6 Performance Metrics  

Performance metrics are essential for assessing the proposed 3DGWT-LAE compression method 

works. The main metrics employed and their significance in evaluating the method performance are 

listed below: 

3.6.1 Compression Ratio (CR): 

CR gauges the 3DGWT-LAE compression method works. Its definition is the proportion of the 

compressed point cloud data file size to the original point cloud data file size. 

                                                     𝐶𝑅 =  
𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑃𝑜𝑖𝑛𝑡 𝐶𝑙𝑜𝑢𝑑 𝐷𝑎𝑡𝑎

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑃𝑜𝑖𝑛𝑡 𝐶𝑙𝑜𝑢𝑑 𝐷𝑎𝑡𝑎
                                                 (40) 

Greater compression efficiency is indicated by a higher CR. For instance, a Scan11204.pcd file 

with a CR of 3.42 has been compressed to around one-third of its original size while maintaining all 

geometric features. 

3.6.2 Peak Signal-to-Noise-Ratio (PSNR): 

In comparison to the original point cloud data, PSNR assesses the reconstructed point cloud 

data is quality. Decibels (dB) are used to express it: 
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     𝑃𝑆𝑁𝑅 = 10. 𝑙𝑜𝑔10  (
𝑀𝐴𝑋2

𝑀𝑆𝐸
)                                                             (41)       

The maximum point value of the data is denoted by 𝑀𝐴𝑋. A greater PSNR is a sign of higher 

quality reconstruction. The recovered data is the same as the original if the PSNR in lossless 

compression is infinite. The proposed 3DGWT-LAE approach ensures that the reconstruction data has 

an infinity value. 

With a CR of 3.42, the proposed 3DGWT-LAE compression method dramatically lowers the file 

size. The reconstruction quality is indicated by the PSNR value, where an infinite value denotes lossless 

compression. The precise reconstruction of the 3D point cloud data as evidenced by the MSE being 

close to zero. 

IV. Performance Analysis and Evaluations 

The proposed 3DGWT-LAE mathematical compression method is a novel strategy made to 

effectively compress 3D point cloud data while maintaining crucial topological and geometric 

characteristics. This approach uses wavelet theory and the graph spectral features, such as Adjacency, 

and Laplacian, to provide a high-fidelity, compact representation of the data. 

Benchmark 3D point cloud datasets Sydney Urban Real-Time Dataset [21] from LiDAR sensors were 

used to validate the method. Results from the experiment showed: Low reconstruction errors and high 

compression ratios. As demonstrated by edges and corner recognition and adjacency matrix 

visualisations, important features are effectively retained. The magnitude of the reconstructed GWT 

coefficients confirms a smooth and reliable signal reconstruction. 

 
                (a)             (b)                                               (c) 

                                                 

                (d)                                                                       (e)                                                        
Fig. 3: Sample Input Images from Sydney Urban Dataset  

A sample input images from the dataset [21] is shown in this figure 3, (a) Scan11886.pcd, (b) 

Scan25322.pcd, (c) Scan20631.pcd, (d) Scan19761.pcd, and (e) Scan2738.pcd which shows a typical 

perspective of the metropolitan setting taken from a LiDAR sensor.  
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Fig. 4: Results of Edge and Corner Identification using 3DGWT-LAE 

High-frequency elements in the graph spectrum were examined in order to identify edges and 

corners in the point cloud data using a graph-based compression approach. At important geometric 

junctions, corners were recognised, and edges were found at abrupt transitions, like object boundaries. 

These characteristics were emphasised in the point cloud data graph visualisation, which displayed the 

corners and the edges. With an MSE of 0.001, the compression procedure maintained structural integrity 

by achieving a compression ratio of 3.42. Figure 4 illustrates how the technique can achieve effective 

compression while concentrating on important elements. 

 

Fig. 5: Adjacency Matrix Visualization of 3D Point Cloud Data (Scan11886.pcd) 

The 3D point cloud data connectivity structure is depicted by the adjacency matrix. Individual 

points are represented by nodes, while edges are determined by the relationships and proximity found 

using the 3DGWT-LAE compression method. Corners that have been identified are indicated, 

highlighting areas of great curvature and prominence of local features. This illustration facilitates 

comprehension of the geometric and topological characteristics of the point cloud data in figure 5. 

The adjacency matrix from the 3D point cloud dataset Scan11886.pcd is displayed in this 

visualisation of figure 5. Each node in the graph made from the point cloud data corresponds to a point, 

and edges show associations based on spatial proximity or other similarity criteria. The adjacency 

matrix captures the connectivity structure of the graph. 
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Fig. 6: Eigenvalue Spectrum of the Laplacian Matrix for 3D Point Cloud Data (Scan11886.pcd) 

The eigenvalues of the Laplacian matrix obtained from the graph built from the 3D point cloud 

data are displayed in this figure 6 visualisation. The eigenvalues shed light on the structure and 

characteristics of the point cloud and are essential for comprehending the graph's spectral 

characteristics. 

The eigenvalues show the point cloud data localised fluctuations, smoothness, and clustering, 

among other structural features. Features like edges and corners can be efficiently recognised and 

isolated through the use of particular eigenvalue ranges in feature extraction. The spectral features serve 

as a guide for graph-based compression and filtering methods, which guarantee effective data 

representation and reconstruction. From figure 6 highlighting the graph spectrum characteristics 

produced from the Scan11886.pcd dataset, this eigenvalue analysis provides a means of identifying 

features and facilitating further processing. 

 

Fig. 7: Visualization of Eigenvectors of the Laplacian Matrix for 3D Point Cloud Data 

(Scan11886.pcd) 

Descripting and visualising the eigenvectors comes after determining the Laplacian matrix's 

eigenvalues. The global structure or smooth changes in the network are captured by low-frequency 

eigenvectors, which correspond to modest eigenvalues. They show general patterns that are consistent 

throughout the graph. For identifying fine structures in the point cloud, high-frequency eigenvectors 

which correlate to large eigenvalues are essential because they capture local fluctuations or sharp  
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features, such the graph edges and corners. The graph signal space has an orthogonal basis 

formed by the eigenvectors of the Laplacian matrix. These eigenvectors aid in the breakdown and 

representation of graph signals at different frequencies in the context of proposed 3DGWT-LAE 

compression algorithm. Both the point cloud data local and global features can be extracted by this 

decomposition. 

The components of each eigenvector can be mapped onto the graph nodes, which stand in for 

the point cloud, in order to visualise the eigenvectors. The visualisation of figure 7 sheds light on the 

graph structure and the behaviour of its many sections at various frequency scales. Smooth patterns that 

extend throughout the network should be seen in the few eigenvectors (linked to tiny eigenvalues), 

which should represent the point cloud overall connectedness and structural arrangement. Higher-

frequency eigenvectors, which are linked to greater eigenvalues, ought to exhibit localised oscillation 

patterns that highlight the point cloud fine-grained characteristics, such as edges and corners. The 

fundamental geometric and structural characteristics of the point cloud are captured by this multi-scale 

decomposition, which is crucial for effective 3DGWT-LAE compression. 

 

Fig. 8: Magnitude of GWT Coefficients for Scan11886.pcd 

The frequency components and localised properties of the graph signal derived from the point 

cloud data can be inferred from the amplitude of the coefficients acquired from the GWT. Wavelet basis 

functions are localised in both the vertex and spectral domains, and the graph signal is projected onto 

them via the GWT coefficients. At different points in the graph, the contribution of particular frequency 

bands is shown by the magnitude of these coefficients. 

Low-frequency coefficients measure the signal overall trends and global, smooth variations. 

Highlight regional variances and shifts in the signal with high-frequency coefficients. Intermediate 

frequency coefficients bridge the gap between local and global characteristics by representing properties 

at particular scales. The figure 8 displays the magnitude of the GWT coefficients for the point cloud 

data (Scan11886.pcd). Significant elements of the point cloud are highlighted by the high magnitude 

coefficients, which are clustered around areas with sharp edges, corners, and localised structural 

differences. Low-magnitude coefficients, represent smoother regions that show slower signal 

fluctuations. A multi-scale representation of the point cloud is provided by this distribution of 

coefficient magnitudes, which is necessary for locating important features and for effective 

compression. 
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Fig. 9: GWT Coefficients at Multiple Scales for Scan11886.pcd 

The coefficients from the GWT applied to the 3D Point Cloud Data (Scan11886.pcd) at various 

scales are shown in this visualisation. Because each scale has a corresponding resolution, the graph 

signal can be broken down into high-pass (local) and low-pass (global) components. The multi-

resolution representation of the point cloud is reflected in the variance of GWT coefficients across 

scales, which is necessary for feature extraction, compression, and in-depth analysis. 

 
Fig. 10: Compressed GWT Coefficients 

This figure 10 displays the compressed coefficients that were produced when the 3D Point 

Cloud Data (Scan11886.pcd) was subjected to the GWT. Adaptive encoding techniques are used in the 

compression process to preserve the most important coefficients, reduce redundancy, and maintain the 

point cloud data key characteristics. The compressed form retains important local and global features 

of the data, including edges, corners, and structural variances. Dataset size is decreased as a result of 

compression, allowing for effective transmission and storage without appreciable information loss. The 
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efficiency of 3DGWT-LAE compression for multi-resolution feature retention in 3D point cloud data 

is demonstrated by this compressed form. 

 

 

 

 

Fig. 11: Compressed GWT Signals for Scan11886.pcd 

The compressed signals obtained from the GWT for the 3D Point Cloud Data (Scan11886.pcd) 

are displayed in this visualisation. The figure 11 shows the compressed graph signals, highlighting the 

removal of unnecessary information while preserving important features. With an emphasis on 

maintaining edges, corners, and important geometric aspects, the compressed signals successfully 

encode the point cloud structure. The point cloud data can be efficiently stored and transmitted to these 

compressed signals, which serve as the foundation for additional processing or reconstruction. The 

compressed GWT signals shows the 3DGWT-LAE compression method preserving the high fidelity 

while drastically cutting down on data size. 

 

Fig. 12: Reconstructed GWT Signals for Scan11886.pcd 

After applying the inverse GWT to the compressed data for 3D Point Cloud Data 

(Scan11886.pcd), this visualisation displays the reconstructed signals. The colour orange draws 

attention to the low-frequency elements, which stand for global and smooth changes in the point cloud 

structure. Blue highlights the high-frequency elements, localised differences, edges, and abrupt 

transitions. Green represents intermediate-frequency components of the data, emphasising aspects at  
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particular sizes or resolutions. A multi-resolution representation of the point cloud is offered by 

the colour-coded signals, which smoothly blend local and global characteristics for 3DGWT-LAE 

process. 

 

  
                      (a)              (b)                                               (c) 

                                                 

                    (d)                                                                       (e)                                                         

Fig. 13: Sample Output Images after reconstruction of 3DGWT-LAE Process  

The reconstructed 3D point cloud data acquired with the proposed 3DGWT-LAE compression 

method is shown in the figure 13. The efficacy of the proposed approach is demonstrated by the rebuilt 

point cloud dataset, which preserve the original data geometric intricacies and structural integrity. High 

realism is ensured during the reconstruction process by maintaining important features including edges, 

corners, and surface details. The 3DGWT-LAE technique is lossless confirmed by the rebuilt point 

cloud data resemblance to the original point cloud data. The outcomes demonstrate the approach 

adaptability to a variety of 3D structures while maintaining both local and global geometric 

characteristics. 

The Sydney Urban Dataset compression and reconstruction outcomes utilizing the proposed 

3DGWT-LAE based mathematical compression method are shown in the table 1. It contrasts the 

compressed and reconstructed point cloud data files with their original sizes. 

Table 1. Performance Analysis of Proposed 3DGWT-LAE Compressed and Reconstruction File Sizes 

for Original Sydney Urban Dataset  

Input PCD File Original PCD 

File size (KB) 

Compressed PCD file 

size using 3DGWT-LAE 

(KB) 

Reconstructed PCD  

File size using 3DGWT-LAE 

(KB) 

Scan0.pcd 824 314.89  357.96  

Scan270.pcd 1100 345.98  492.70  
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Scan2299.pcd 1077 301.52  479.49 

Scan2446.pcd 1097 321.65  483.67  

Scan2738.pcd 1161 404.23  595.56 

Scan10974.pcd 1089 401.89  475.21  

Scan11204.pcd 1108 323.38 546.32 

Scan11290.pcd 1118 468.36 575.32 

Scan11886.pcd 1159 483.24 578.20 

Scan12119.pcd 1170 496.34 569.37 

Scan12346.pcd 1065 375.36 468.32 

Scan12715.pcd 1050 375.26 458.25 

Scan16217.pcd 1056 368.19 459.51 

Scan17038.pcd 1117 479.61 573.18 

Scan19631.pcd 1099 361.28 482.45 

Scan19761.pcd 1151 472.36 569.23 

Scan20631.pcd 1140 482.01 559.32 

Scan25322.pcd 1081 421.05 473.68 

Original File Size indicates, in kilobytes (KB), the amount of storage space needed for the 

uncompressed PCD (Point Cloud Data) data. Compressed File Size shows the decreased file size 

following the proposed 3DGWT-LAE compression method, indicating a notable reduction in storage 

usage. The ability of the approach to preserve high fidelity during reconstruction is demonstrated by the 

Reconstructed File Size, which represents the storage capacity of the reconstructed PCD data using 

3DGWT-LAE. 

The performance parameters of the proposed 3DGWT-LAE compression technique applied to 

the Sydney Urban Dataset analysing Compression Ratio (CR), Mean Squared Error (MSE), and Peak 

Signal-to-Noise Ratio (PSNR) are depicted in the figure 14.  

 

Fig. 14: Performance Metrics of Proposed Work 3DGWT-LAE 
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Indicating the compression method reduces file size while maintaining essential geometric 

features, the Compression Ratio (CR) is shown as a significant value (3.57). The minuscule distortion 

generated during compression and reconstruction is demonstrated by the Mean Squared Error (MSE), 

which is very low (0.001). With a Peak Signal-to-Noise Ratio (PSNR) of infinite (∞), the reconstructed 

data exhibits remarkable fidelity in comparison to the original, attaining lossless quality. This graphic 

demonstrates the proposed 3DGWT-LAE approach strikes a balance between reconstruction accuracy 

and compression efficiency. 

Table 2. Comparison of Compression Results Using Proposed 3DGWT-LAE for Original Sydney 

Urban Dataset with other compression techniques. 

Input PCD File 
Original size of 

PCD in KB 

Compressed size 

of PCD with 7-Zip 

in KB 

Compressed size 

of PCD with 

WinRAR in KB 

Compressed size 

of PCD using 

3DGWT-LAE in 

KB 

Scan0.pcd 824 439 456  314.89  

Scan270.pcd 1100 587 619  345.98  

Scan2299.pcd 1077 582 608 301.52  

Scan2446.pcd 1097 587 618 321.65  

Scan2738.pcd 1161 622 645 404.23  

Scan10974.pcd 1089 590 620 401.89  

Scan11204.pcd 1108 618 630 323.38 

Scan11290.pcd 1118 604 625 468.36 

Scan11886.pcd 1159 608 732 483.24 

Scan12119.pcd 1170 608 612  496.34 

Scan12346.pcd 1065 612 560  375.36 

Scan12715.pcd 1050 550 579  375.26 

Scan16217.pcd 1056 575 578  368.19 

Scan17038.pcd 1117 593 605 479.61 

Scan19631.pcd 1099 583 583  361.28 

Scan19761.pcd 1151 612 616 472.36 

Scan20631.pcd 1140 603 604 482.01 

Scan25322.pcd 1081 591 603 421.05 

 

The Sydney Urban Dataset performance is compared in the table 2 between the proposed 3DGWT-

LAE based mathematical compression method and two well-known compression techniques, WinRAR 

and 7-Zip. Original File Size Kilobytes (KB) of the uncompressed file size. Compressed File Size is the 

sizes of the files attained following compression with proposed technique. WinRAR uses the utility to 

display the compression results. 7-Zip uses to reflect the compression results. The proposed approach 

emphasizes the file size attained by employing the 3DGWT-LAE compression method. 

V. Conclusion 

This work presented a novel 3DGWT-LAE compression method for 3D point cloud data that 

efficiently minimises data size while preserving high reconstruction accuracy. The effectiveness of the 

proposed 3DGWT-LAE compression method is shown by the experimental evaluation findings. The  
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Scan2299.pcd file, which had an original size of 1077 KB, was compressed to produce a 

compressed GWT file size of 301.52 Kilo Bytes. This is a significant reduction in data size without 

sacrificing fidelity. The capacity to maintain the original data structural integrity throughout the 

compression and rebuilding process is demonstrated by the 357.96 Kilo Bytes reconstructed file size. 

This shows that the proposed approach maintains the key characteristics of the point cloud data while 

reducing the file size by about 3.57 times. This compression efficiency demonstrates the method works 

to reduce the amount of storage and transmission for large scale 3D datasets. The compression ratio 

shows a notable decrease in file size, which makes it very effective at managing big datasets. The 

reconstructed data shows little distortion during the compression process and is quite similar to the 

original, with a mean squared error (MSE) of only 0.001. Furthermore, the lossless reconstruction is 

confirmed by the infinite peak signal-to-noise ratio (PSNR), which guarantees that the original data is 

retained with minimal error. These results highlight the proposed method ability to achieve high-quality 

compression, which makes it a reliable alternative for processing 3D point cloud data in a variety of 

applications. 

The proposed 3DGWT-LAE based compression method shows remarkable effectiveness in 

minimising the volume of 3D point cloud data while maintaining crucial characteristics. Utilising 

adaptive coding techniques based on neural networks to further maximise compression ratios without 

sacrificing reconstruction quality. Extending the process to deal with large 3D datasets, like those 

produced by LiDAR systems in applications for autonomous driving or real-time urban mapping. 
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